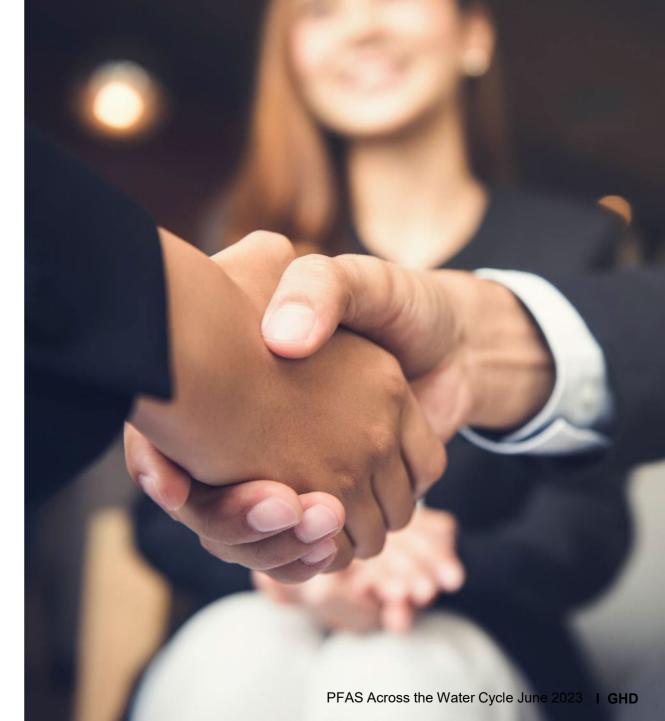


→ Jay Surti, Holly Churman, and Steven Brockliss

PFAS across the water cycle→ Promising management and treatment strategies

Introductions

Jay Surti, PE East Region Biosolids Leader


Holly Churman, PE Water Treatment and Desalination Service Line Leader - Americas

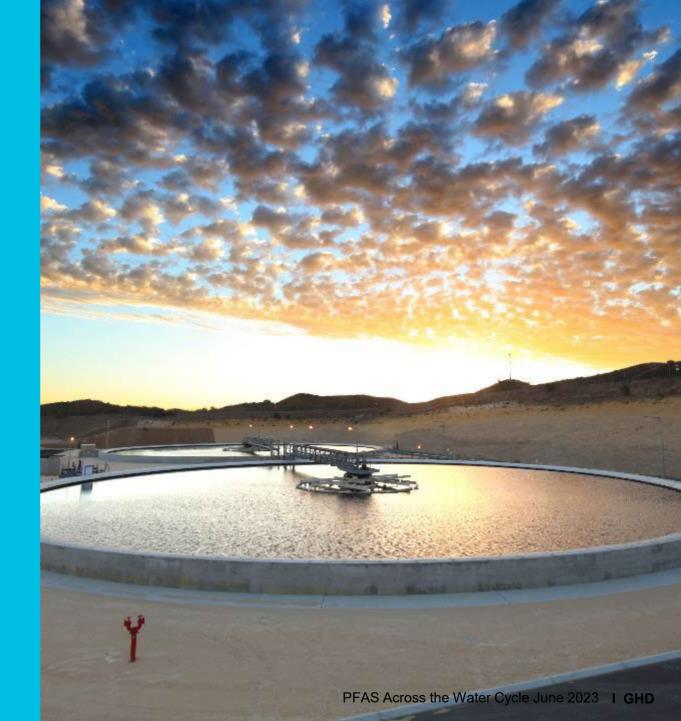

```
Steven Brockliss, PE
Senior Project Engineer
```

Acknowledgements:

- Mallory Griffin, PE - ESWP Membership Chair

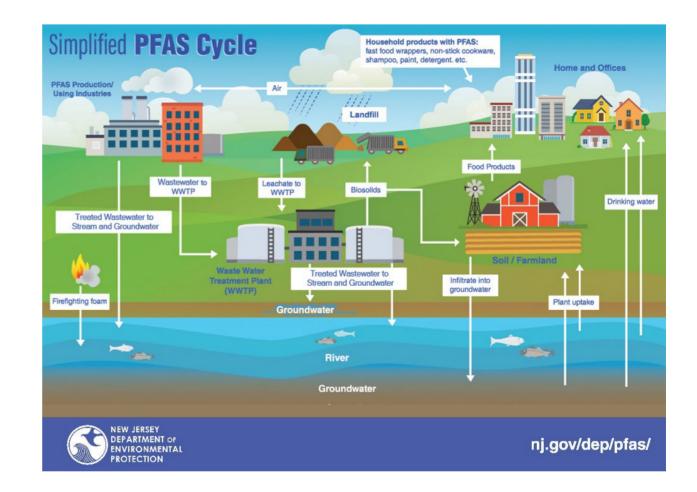
Safety moment →

Bench and Pilot Test Safety


- Use of proper PPE is important during all stages of project development and delivery, including bench and pilot studies
- Examples: gloves, hardhat, steel toe boots, safety glasses
- Ensure well-being of staff performing work
- Optimize test outcomes by mitigating potential contamination of water samples

Protect Staff, Optimize Outcomes

- → Scoping the PFAS challenge
 - → Emerging regulations
 → Emerging analytics
- Treatment: Separation and Destruction
 - ➔ Potable water
 - → Wastewater
- → Case studies
- → Take aways



The PFAS challenge

Scoping and understanding Emerging regulations

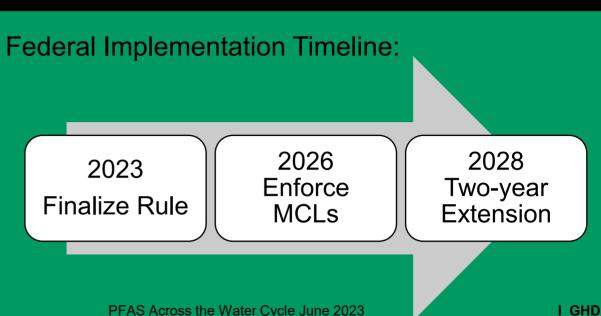
PFAS exposure and its omnipresence

Federal and state regulations

USEPA has proposed a National Primary Drinking Water Regulation for six PFAS constituents

 \rightarrow Enforceable standard to address PFAS in drinking water

Maximum Contaminant Levels Proposed:


- PFOA < 4.0 ppt
- PFOS < 4.0 ppt
- Hazard Index (HI) < 1.0
 - Covers PFHxS, GenX, PFNA, PFBS

$\frac{PFNA}{10} + \frac{PFHxS}{9} + \frac{PFBS}{2000} + \frac{GenX}{10} = Hazard Index Value$

Pennsylvania history

- 2013: PFAS challenge identified via USEPA Third Unregulated Contaminant Monitoring Rule (UCMR3)
- 2016: USEPA reduced combined lifetime HAL for PFOA and PFOS to 70 ppt; PA collaborated with federal and local partners to identify sources
- 2023: PA DEP sets MCLs:

Published PA Drinking Water MCLs				
	MCLG	MCL		
PFOA	8 ppt	14 ppt		
PFOS	14 ppt	18 ppt		

Published PFAS extraction and analytical methods

Media	Method	Validation status	Analyte list
Drinking water	USEPA 537.1	Multi-laboratory	18 PFAS analytes (including 4 PFAS not included in USEPA Method 533)
Drinking water	USEPA 533	Multi-laboratory	25 PFAS analytes (including 11 not included in USEPA Method 537.1)
Surface water, groundwater, and wastewater	USEPA SW-846 Method 3512	Multi-laboratory	24 PFAS analytes (does not include all PFAS included in USEPA Method 537.1 or 533)
Surface water, groundwater, and wastewater	USEPA SW-846 Method 8327	Multi-laboratory	24 PFAS analytes (does not include all PFAS included in USEPA Method 537.1 or 533)

Emerging biosolids land application regulations

Michigan

- Tiered approach
 - Tier 3 (PFOS ≥ 150 µg/kg)
- Cannot be land applied
- Investigate potential sources to develop a source reduction program
 - Tier 2 (PFOS ≥ 50 µg/kg & <150 µg/kg)
- Investigate potential sources to develop a source reduction program
- Reduce land application rates to no more than 1.5 dry tons per acre (or submit an alternative risk mitigation strategy)
 - Tier 1: PFOS > 20 µg/kg & < 50 µg/kg
- Consider investigating sources and sampling the WWTP effluent for PFAS

Maine

- March 2019: Moratorium on biosolids land application
 - Testing for PFAS required for all biosolids to be land applied

Screening concentrations for PFAS in biosolidsPFOA2.5 ng/kgPFOS5.2 ng/kgPFBS1900 ng/kg

 April 2022: Ban on use of all products that contain wastewater biosolids

PFAS treatment

→ Drinking water

Treatment Options

TREATMENT PROCESS	PFOA	PFOS	PFNA	PFHxS	PFBS	HFPO-DA (Gen-X)	PFHpA	PFDA
Aeration								
Coagulation / DAF								
Coagulation / Flocculation / Sedimentation / Filtration								
Anion Exchange								
Granular Activated Carbon								
Nano Filtration								
Reverse Osmosis								
MnO ₄ , O ₃ , ClO ₂ , Cl ₂ , UV, Chloramination								

□ <10% Removal, □ 10 – 90% Removal, ■ >90% Removal, No data available for PFHxS or HFPO-DA

Treatment Selection

- Characterizing water supplies
- Using consistent analytical support to ensure accuracy of data
- Setting well-grounded treatment objectives
- Understanding existing water demand and the condition of available assets
- Having an effective communication plan to engage your community throughout the process
- Supporting technology selection with bench study and pilot-scale data
- Maintaining a rapport with the regulating agency throughout the planning process

Proven Processes

Carbon Adsorption

Granular Activated Carbon

Ion Exchange Anionic Resin

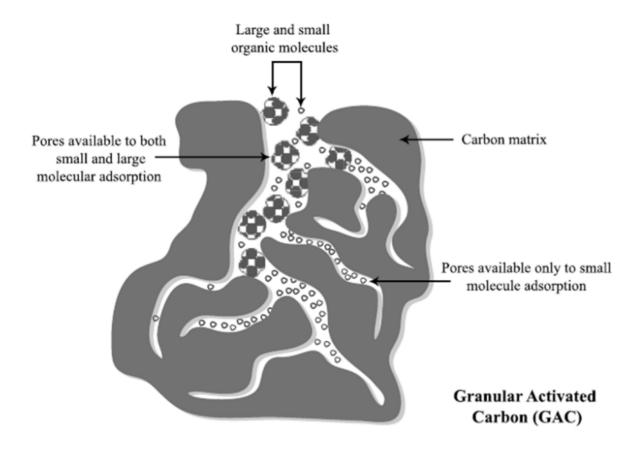
High Pressure Membrane

Nano-filtration and Reverse Osmosis

Proven Processes

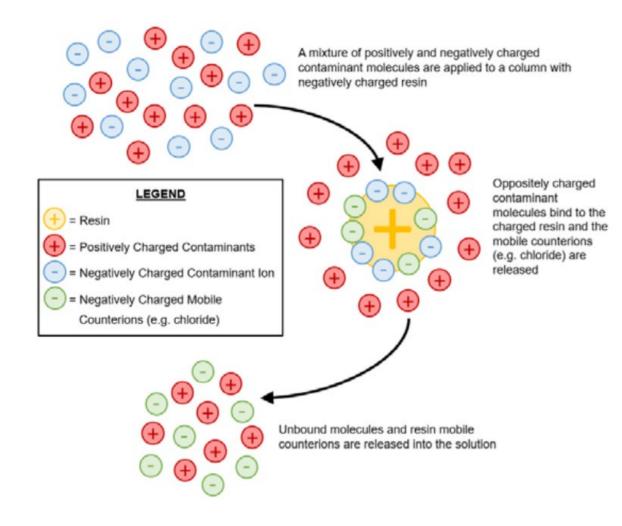
Carbon Adsorption

Granular Activated Carbon

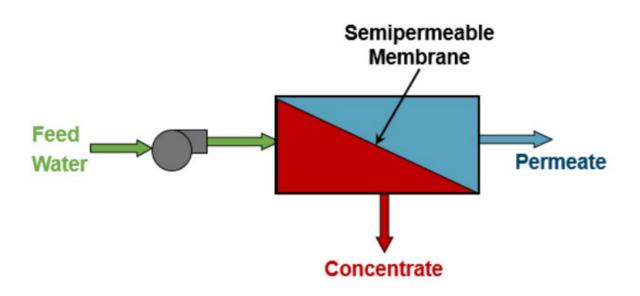

Ion Exchange Anionic Resin

High Pressure Membrane

Nano-filtration and Reverse Osmosis



Activated Carbon Adsorption


- Good PFAS removal
- Secondary water quality benefits
- Backwash wastewater must be disposed of
- Carbon will need to be reactivated or incinerated
- GAC can be retrofitted to existing sand filters
- O&M costs for media replacement

Ion Exchange

- Reliable treatment process
- Some secondary water quality benefits
- PFAS-selective resins are available
- Increased resin use depending on water chemistry
- O&M costs for resin replacement

High Pressure Membranes

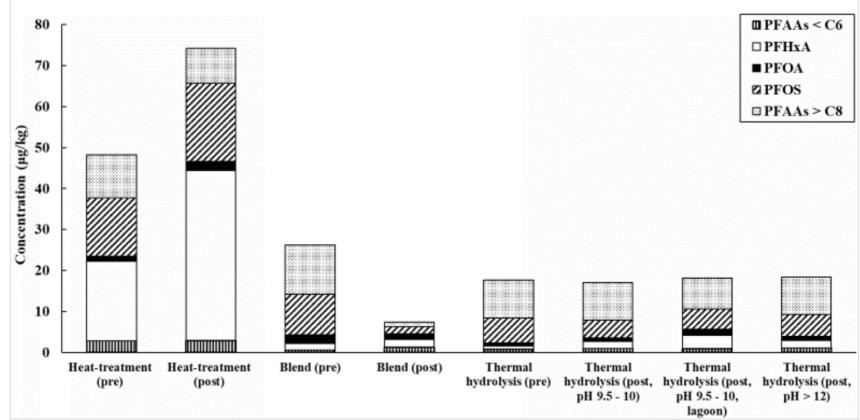
- Best PFAS removal
- Secondary water quality benefits
- Concentrate disposal will be challenging
- Pre-treatment will be required
- Post-membrane treatment may be required
- High energy needs relative to other processes
- High capital and O&M costs

Comparison


Treatment Technology	Relative Cost	Short Chain Removal	Long Chain Removal	Waste Stream	PFAS Endpoint
GAC Adsorption	Moderate to High	< 96%	40% - 96%	Backwash Water	Carbon Media
Ion Exchange	Moderate to High	< 95%	55% - 97%	N/A	Exchange Resin
Membrane Filtration	High	> 99%	> 99%	Concentrate Stream	???

Promising management and treatment strategies

→ Wastewater and biosolids


Fate of PFAS in wastewater & biosolids

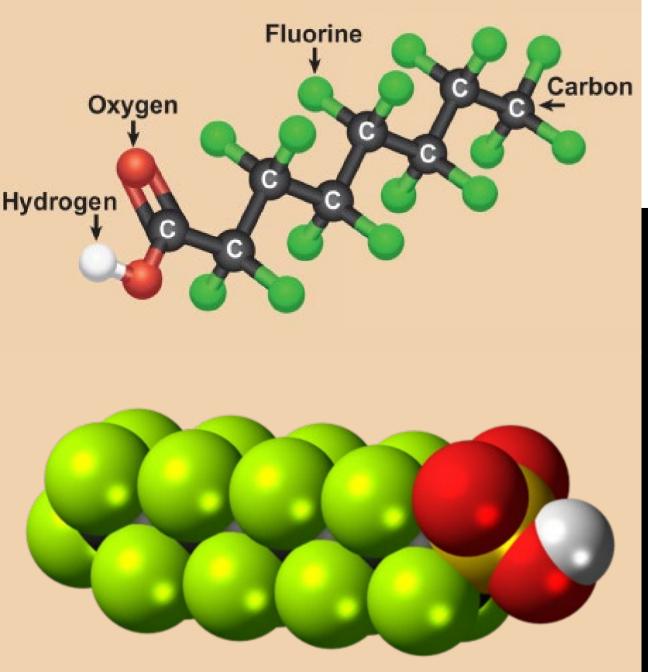
- PFAS are not in a stable condition, changing between dissolved and particulate phase
- Lighter PFAS compounds stay in the liquid phase
- Heavier PFAS compounds accumulate in biosolids
- Industrial waste and imported waste streams significant contributors of PFAS

Fate of PFAS through solids treatment process

Total PFAA Concentrations (µg/kg, dry wt.) for the < 2 mm Fraction of Fertilizers Pre- and Post-Treatment.

Source: Per- and Polyfluoroalkyl Substances in Commercially Available Biosolids-Based Fertilizers: The Effect of Post-Treatment Processes; by Rooney Kim Lazcano, Chloe de Perre, Michael L. Mashtare and Linda S. Lee. Presented at the WEF/IWA Residuals and Biosolids Conference 2019.

Michigan – Source control achievements

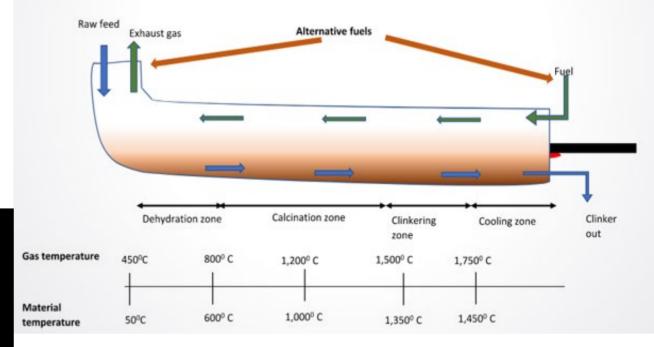

Substantial PFOS Reduction in WRRF Effluent after source control initiatives

Municipal WWTP	PFOS, Effluent (ppt, most recent**)	PFOS Reduction in Effluent (highest to most recent)	Actions Taken to Reduce PFOS		
Lapeer	<18*	99%	Treatment (GAC) at source (1)		
Wixom	17*	99%	Treatment (GAC) at source (1)		
Port Huron	15*	99%	Elimination of PFOS source (2)		
Howell	4	97%	Treatment (GAC/resin) at source (1)		
Bronson	12	97%	Treatment (GAC) at source (1)		
Ionia	25*	95%	Treatment (GAC) at source (1)		
Kalamazoo	5	88%	Treatment (GAC) at sources (2), change water supply		
K I Sawyer	13*	95%	Eliminate leak AFFF, some cleaning		
GLWA (Detroit)	37*	23%	Treatment (GAC) at sources (9)		
*Oractor then Michigan's Water Quality Standard of 10 ppt					

*Greater than Michigan's Water Quality Standard of 12 ppt

**Data (rounded) received as of June 26, 2020

Source: Michigan IPP Initiative, Identified Industrial Sources of PFOS to Municipal Wastewater Treatment Plants. Aug 2020



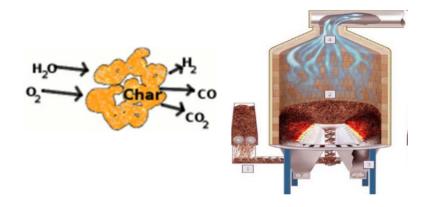
Treating PFAS – Tough to crack!

- Terminal PFAAs are extremely stable compounds
- Strong C-F bond, and carbon shielding
- Thermal destruction (mineralization) require temperatures greater than 1,000°C (1,832°F).
- Chemical hydrolysis, oxidation and reduction is challenging due to the fluorine effect!

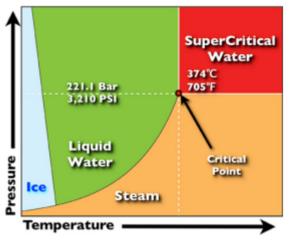
Thermal Combustion (Incineration)

- 3Ts (time, temperature and turbulence)
- Concerns with PFAS incineration
 - Products of Incomplete Combustion (PICs)
 - Shorter chain PFAS, partially fluorinated PFAS
 - Secondary pollution concerns
 - HF corrosion concerns. Postincineration treatment required

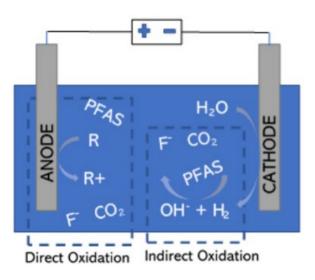
Sewage sludge as co-fuel for cement kilns

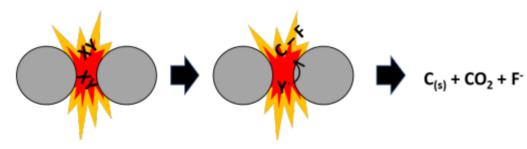

- Temperatures: 1,400°C to 2,000 °C
- Calcium catalyzes PFAS destruction
- Long residence time: 20 30 mins (solids), 6 – 10 seconds (gas)

Promising PFAS destruction technologies



PFAS Innovative Treatment Team (PITT)


Pyrolysis and Gasification

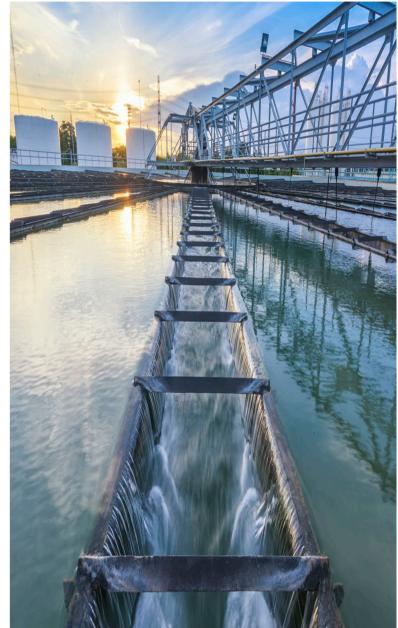

Supercritical Water Oxidation

Electrochemical Oxidation

Mechanochemical Degradation

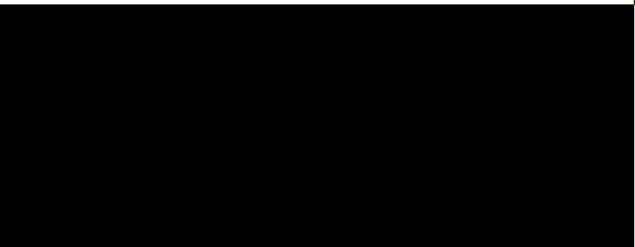
Case study 1

Treatability of PFAS contaminated groundwater for potable use



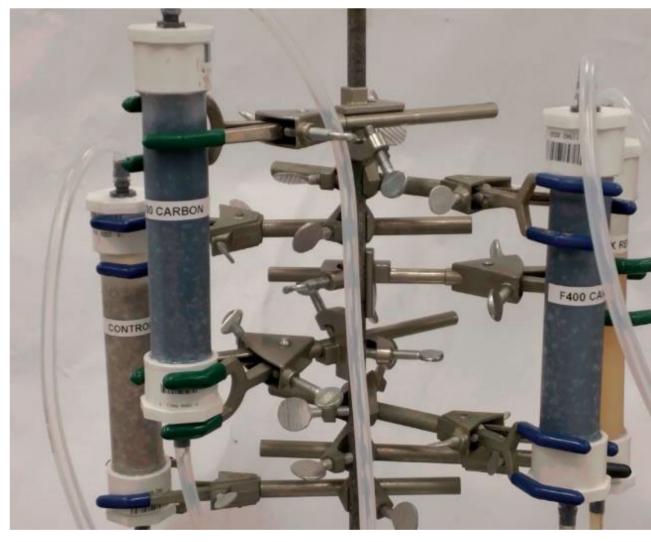
VIRGINIA

Project background


 Finished water samples were taken at a private client's drinking water treatment plants for the 18 PFAS analytes included in EPA Method 537.1. Results from production well were above the EPA health advisory of 70 ppt for Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) either separately or in combination. The client decided to keep this production well offline until a treatment plan is in place.

Data analysis

- Some PFAS removal is achieved by the existing nitrate IX system, but it is not sufficient to meet EPA's Health Advisory Limit.
- Influent nitrate measured during GHD's sampling was 5.7 mg/L which is just above the finished water quality target concentration of 5 mg/L. If levels drop below 5 mg/L, the nitrate IX system could be fully bypassed.


- 90% of Nitrate and Sulfate Removed
- 55% PFOS Removal
- 67% PFHxS Increase

Treatment alternatives

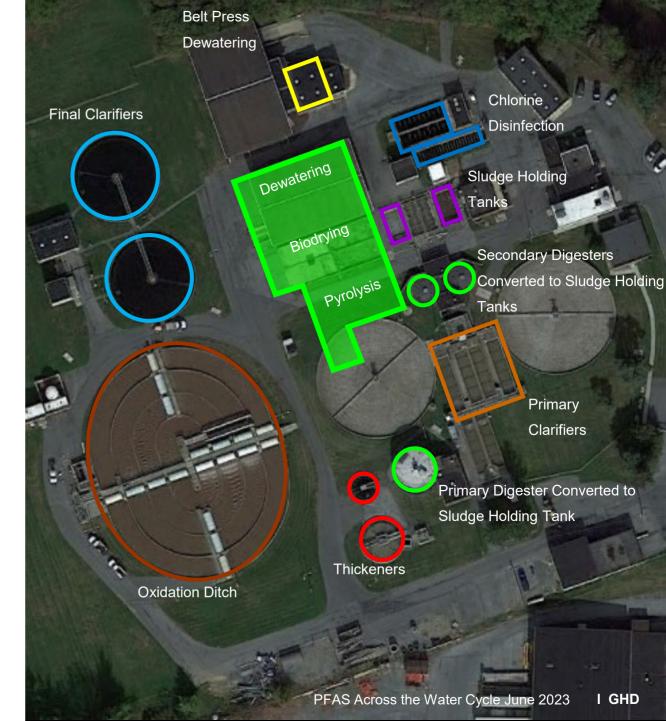
Alternative	Option Description	Stream Treated	Advantages	Disadvantages
1	PFAS specific IX	Nitrate IX effluent plus bypass	Existing nitrate IX process remains unchanged	Nitrate loading on PFAS IX will shorten life. PFAS potentially present in nitrate IX regen.
2	IX	Nitrate IX effluent	Low nitrate sulfate loading on PFAS IX extending the time to breakthrough	Nitrate IX may require modification. PFAS potentially present in nitrate IX regen.
3	IX	Raw Water	Eliminate nitrate IX resin treatment and regen. Repurpose vessel with new PFAS IX process	PFAS resin will remove nitrate for the first 500 to 1,000 BV of operation.
4	GAC	Raw Water	PFAS removed prior to Nitrate IX, so no potential for PFAS in IX regen.Existing nitrate IX process remains unchanged.	Radon adsorption would make the GAC a radioactive waste.
5	GAC	Radon Stripper Effluent	PFAS removed prior to Nitrate IX, so no potential for PFAS in IX regen.	PFAS potentially present in Nitrate IX regen

RSSCT test results

Media Type	Sample Location	EBCT	PFOA + PFOS
IX Resin 1	Raw Water	12 mins	~2 ppt
	Nitrate IX Effluent Plus Bypass	2 mins	~21 ppt
IX Resin 2	Raw Water	3 mins	~10 ppt
GAC 1	Nitrate IX Effluent Plus Bypass	10 mins	ND

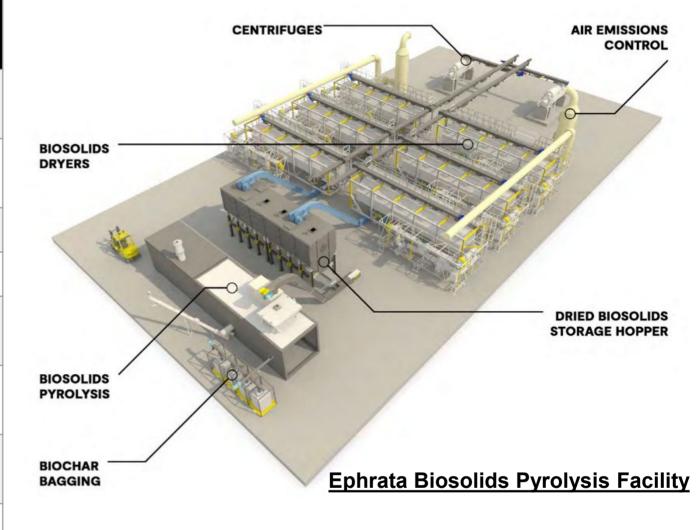
Alternative comparison

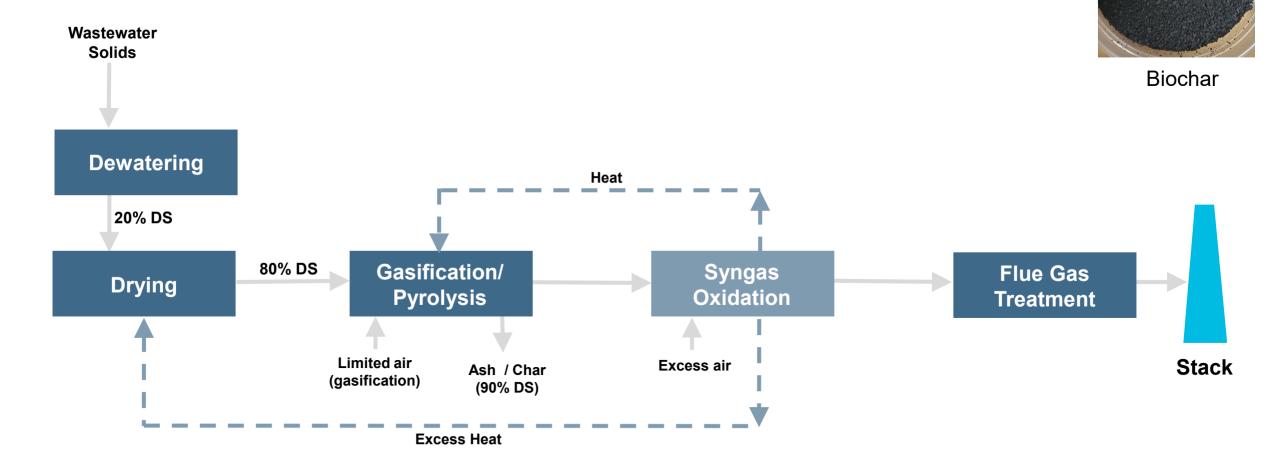
- Manufacturer performance projections vs. treatability testing
- Process flow schematics
- Site layout and footprint requirement
- Cost estimate


Case study 2

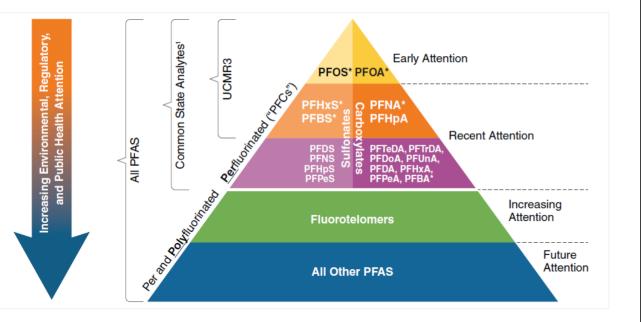
→ Biosolids pyrolysis

Ephrata Borough Authority (EBA) WWTP # 1


- 3.8 MGD rated, current flow 2 MGD
- Liquids treatment:
 - Primary treatment
 - Oxidation ditch secondary treatment
 - Anaerobic digestion
 - Chlorine disinfection


Anaerobic digestion vs. pyrolysis

Biosolids pyrolysis benefits compared to anaerobic digestion


Constructability	Less disruptive to plant operations
Sequencing	Less sludge hauling during construction
Overall cost (NPV basis)	Less
Sludge storage	More (repurpose digesters)
Internal plant nutrient recycle loads	None
Mass of product going offsite	Significantly less
Quality of product	Higher compared to dewatered cake
PFAS risk	Mitigated for biosolids

Pyrolysis and gasification

Take aways

- Characterize PFAS throughout operations, including water, wastewater, biosolids and spent media
- Evaluate existing treatment systems and ability to remove and/or treat PFAS
- Treatability trials to develop PFAS removal (separation) and destruction solutions
- Investigate source control opportunities
- Adaptive planning in light of the regulatory uncertainty to reduce risks
- Evaluate alternative approaches for managing biosolids, especially if biosolids are land applied
- Stakeholder communications and transparency

*** Thank You**

Jay Surti, PE East Region Biosolids Leader jay.surti@ghd.com 973.953.9888 Holly Churman, PE Water Treatment and Desalination Service Line Leader - Americas Holly.Churman@ghd.com 412.903.7852

Steven Brockliss, PE Senior Project Engineer Steven.Brockliss@ghd.com 610.321.0802

