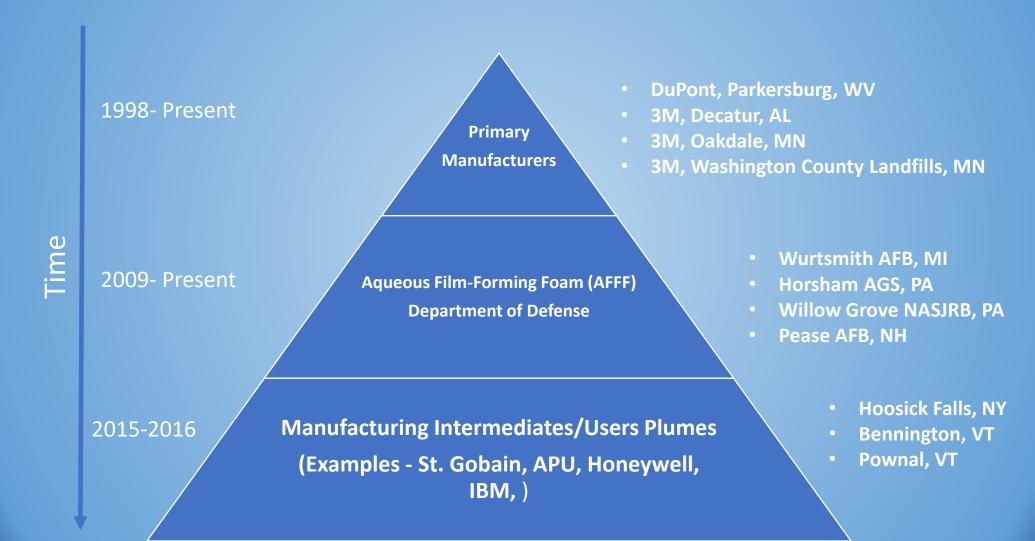

PFAS Introduction & Overview



What are PFAS compounds?

- PFAS are a class of synthetic compounds containing thousands of chemicals formed from carbon chains with an attached fluorine.
- The C-F bond is the shortest and the strongest bond in nature and is responsible for most of the unique and useful characteristics of these compounds.
- PFAS are surfactants that repel oil and water, reduce wear or surface adhesion
- Introduced as early as 1948 (Teflon or PTFE polymer) with increasing use in the late 1960s and 1970s.
- At low concentrations, many have significant water solubility.

UCMR 3 Data and Results

- No enforceable federal drinking water standards have been established for PFAS. The EPA is currently working on drinking water data from UCMR3 to determine if establishing a Maximum Contaminant Level (MCL) is warranted under the Safe Drinking Water Act.
- 2013-2015: EPA conducts the third Unregulated Contaminants Monitoring Rule (UCMR3) study. Six analytes were monitored at the Reporting Limits specified by the Rule.
 - PFBS 90 ng/L, PFHxS 40 ng/L, PFOS 30 ng/L
 - PFHpA 40 ng/L, PFOA 20 ng/L, PFNA 20 ng/L

EPA Health Advisory Levels

- EPA 2011 Provisonal Drinking Water Health Advisory Levels.
 - PFOS, 200 ng/L
 - PFOA, 400 ng/L
- EPA 2016 Drinking Water Health Advisory Levels.
 - EPA guidance level for PFOA or PFOS, 70 ng/L
 - EPA guidance level PFOA + PFOS, 70 ng/L
- Not legally enforceable, but new Health Advisory Levels may be given weight in state regulation and in litigation.

Potential PFAS Sources

MANUFACTURING

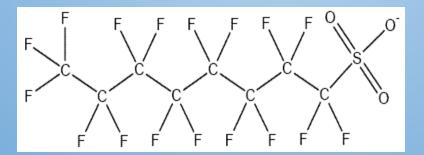
- Aerospace
- Automotive
- Chemical
- Electronics
- Metal Coatings & Plating
- Textiles

FIREFIGHTING

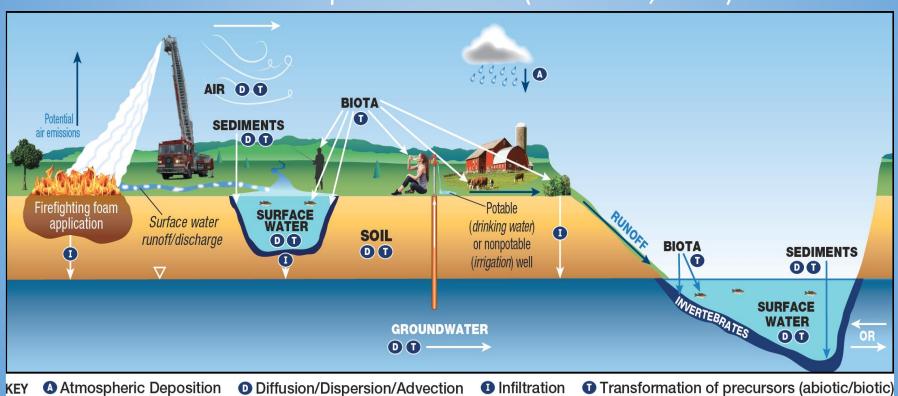
- Airports and Aviation Facilities
- Military Bases and Training Centers
- Petroleum Refineries and Terminals
- Petrochemical Production Facilities

NON-INDUSTRIAL

- Waste Disposal Facilities
- Wastewater Treatment Plants
- Biosolids Application for Agriculture



Fate and Transport Processes


Partitioning:

- Hydrophobic & Lipophobic
- Sorption:
 - PFSA > PFCA
 - Longer chain > Shorter chain
 - Koc
- Mobility
 - Short chain > Long chain
 - Low volatility
 - Airborne particulates

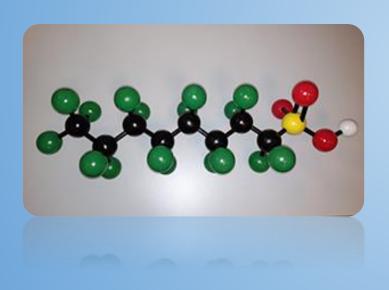
Conceptual Site Model

• From ITRC Fate and Transport Fact Sheet (March 16, 2018)

Ubiquity

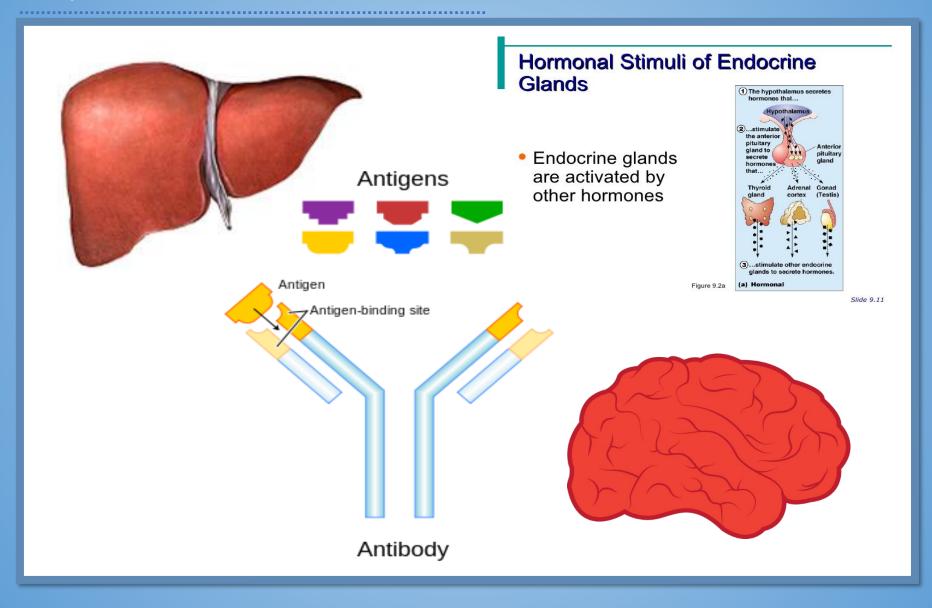
Human Exposure

Serum Level (ppb)	PFOS (C8)	PFOA (C8)	PFHxS (C6)
Production Workers	1500-2000	500-1000	~500
NHANES 99-00	30.4	5.2	2.1
NHANES 03-04	20.7	3.9	1.9
NHANES 13-14	5	1.9	1.4

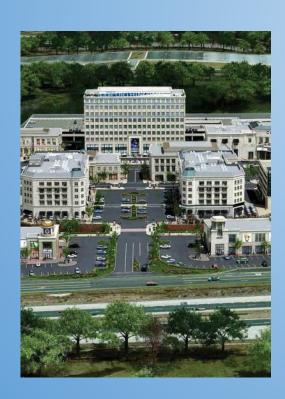

Persistent

...........

Human Serum Half-lives


Compound	No. of Carbons	Half-life
PFOS	8	4.3-5 years
PFOA	8	2.1-3.8 years
PFHxS	6	8.5 years
PFHxA	6	32 days
PFBS	4	28 days
PFBA	4	2-4 days

Distribution



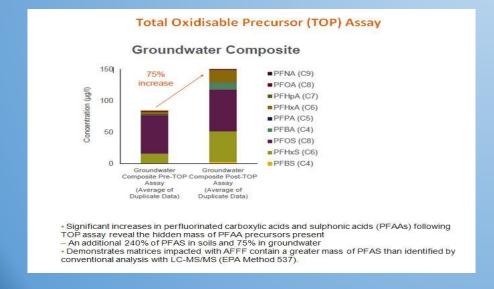
- Low affinity to fat
- Binds to proteins
 - Cell membrane surfaces
 - Highly perfused tissues
- Minimally in muscles
- Cross the placenta
- Men have higher levels than women
- Very little metabolism of PFOS and PFOA

Systemic Toxicities

Phase I Environmental Site Assessments (ESAs)

- ASTM E1527-3 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process
 - Identify recognized environmental concerns (RECs)
 - Petroleum products and "hazardous substances"
 - "Hazardous substances" defined by CERCLA
 - PFAS not currently a hazardous substance under CERCLA
 - EPA may designate PFOA and PFOS as "hazardous substances"
 - In the meantime, the All Appropriate Inquiries (All) rule also states "pollutants" and "contaminants."

How to Sample for PFAS


- PFAS can be found in many consumer products including sampling and analytical equipment.
- Special care must be taken to avoid sample contamination.
- Need very low reporting limits.

Methods

- Method Development and Validation
 - EPA 537 Drinking Water Method Released 2008
 Modified method used for other matrices.
 - ASTM D7968-14 Standard Test Method for in Soil
 - ASTM D7979-15 Standard Test Method for Water, Sludge, Influent, Effluent and Waste Water
 - Various documents, research papers, vendor application notes
 - DoD QSM 5.0 Table 15 and QSM 5.1 Table B-15.
- New methods under development for non-drinking water matrices. EPA and DoD are working on these.

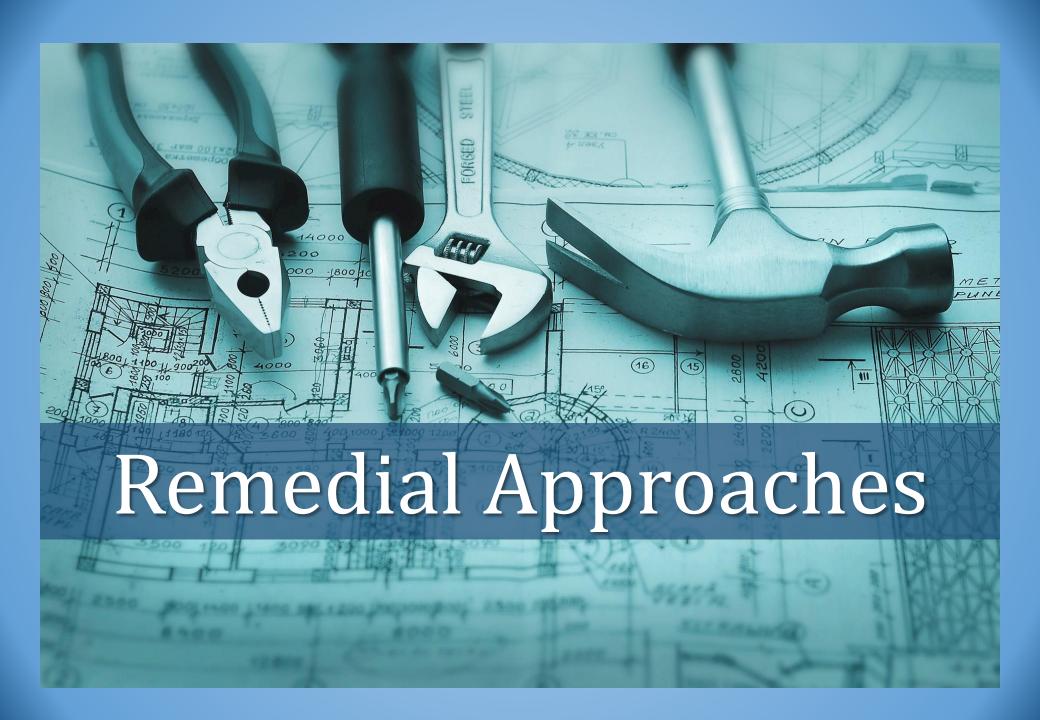
Total Oxidisable Precursors Assay

............

- Process of transforming PFAS precursors in a sample to measurable perfluorinated carboxylic acid which can be measured.
- Sample + persulfate + heat converts precursors to terminal PFCAs and PFSAs
- LC MS/MS analysis without conversion (before) + conversion (after) + LC MS/MS analysis
- Delta is converted precursors

New and Upcoming

• SPLP (1312) and LEAF (1315)


- Bottle extractor HDPE
- Filtration apparatus stainless steel
- Waste characterization impact analysis

• Air

- Various media: impinger fluids, particulate filter,
 XAD-2 Resin
- Media prepared by lab and batch tested,
- Prep procedures modified for various media

PFAS Forensic

- Custom projects project needs clear definition, information on products and site, and an investigative plan.
- Matching the fingerprints of a source or product (composition or degradation products) with the fingerprints at an area with PFAS concerns.
- Analysis of products and consumer goods (PFAS and TOP) vs field results to determine sources found in field.

Characteristics of PFASs

- Issues
 - Detection
 - Precursors → Compounds of concern
- Recalcitrant
 - Strong C-F bond
- Low volatility
- High solubility
 - Long plumes

Remedial Technologies -PFAS Treatment

Groundwater Remediation

- Granulated Activated carbon
- Ion Exchange resins
- Filtration/reverse osmosis
- In-situ Treatment
 - In situ injectable carbon-based systems
 - In situ chemical oxidation
 - Various high energy oxidant systems
 - Creating reductive and oxidative radicals

Biotransformation

- Not for C-F bond?
- Possible in time?

• "Other"

• High temperature > 1,100 C

GAC

- Proven effective multiple sites viable option
- Low sorption of PFAAs- GAC consumption and costs higher
- Higher costs than conventional contaminants
- Lower capacity than Ion exchange
- May be ineffective on short chain PFASs
- Regeneration, at high temperature: "destroys"
 PFASs but may reduce capacity
- Can be more cost-effective, but site-specific analysis required

Ion Exchange

- Number case studies increasing
- High capacity for PFAS adsorption
- Working on resins for improving short chain PFAS removal
- Can be more cost-effective, but sitespecific analysis required
- Regeneration and PFAS destruction research/demonstration is ongoing

Treatment of Solids- PFASs

Chemical Fixation/ Immobilization

- Commercially available
 - RemBind
- Isolate in place
 - Capping
 - Landfill reconstruction
- Incineration
 - Proven technology
 - Generally for lower Volume, higher concentration materials
- Landfill
 - Commercially available vs. special construction
 - Leachate management & treatment considerations

Common Client Approaches

- If water, then GAC
- If solids (typically lower concentration, higher volume), then isolation
- If solids (high concentration, low volume), then incineration

Treatment Technology Summary

- Excavation & landfilling and isolation in place are the best current solids treatment options
 - Commercially available additives such as RemBindTM and MatCARETM.
- Pump & Treat
 - Using GAC is the best current water treatment option
 - Ion exchange is also commercially available
- In-Situ Options
 - Oxidation technology- emerging
 - Injection of activated carbonemerging

PFAS Resources

www.epa.gov/pfas

 www.dep.pa.gov/Citizens/My-Water/drinking water/Perfluorinated Chemicals-PFOA and PFOS-Pennsylvania

ITRC PFAS Team

- Includes >350 members: industry, academia, DOD, regulatory, consulting, analytical labs and vendors
- Seven PFAS Fact Sheets:
 - AFFF Introduction
 - History and Use
 - Naming Conventions and Chemical Properties
 - Regulations and Guidance
 - Fate and Transport
 - Site Characterization, Sampling, Lab Methods
 - Remediation Technologies and Methods
- 2019 Technical Guidance Document

www.itrcweb.org

Contact Information

- Richard K Evans, PE
 - (800) 426-9871 ext. 3014 revans@GESonline.com
- Harry Behzadi, Ph.D.
 - (407) 615-0381
 - Harry.behzadi@sgs.com
- Ronald Kotun, Ph.D., Senior Toxicologist
 - (412) 921-8291
 - ronald.kotun@tetratech.com
- Troy Conrad, Director
 - (717) 783-9480
 - tconrad@pa.gov